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ABSTRACT

In an era of “moving fast and breaking things”, regulators have moved slowly
to pick up the safety, bias, and legal pieces left in the wake of broken Artificial
Intelligence (AI) deployment. Since AI models, such as large language models, are
able to push misinformation and stoke division within our society, it is imperative
for regulators to employ a framework that mitigates these dangers and ensures
user safety. While there is much-warranted discussion about how to address the
safety, bias, and legal woes of state-of-the-art AI models, the number of rigorous
and realistic mathematical frameworks to regulate AI safety is lacking. We take
on this challenge, proposing an auction-based regulatory mechanism that provably
incentivizes model-building agents (i) to deploy safer models and (ii) to participate
in the regulation process. We provably guarantee, via derived Nash Equilibria, that
each participating agent’s best strategy is to submit a model safer than a prescribed
minimum-safety threshold. Empirical results show that our regulatory auction
boosts safety and participation rates by 20% and 15% respectively, outperforming
simple regulatory frameworks that merely enforce minimum safety standards.

1 INTRODUCTION

Current Artificial Intelligence (AI) models are powerful and have revolutionized a wide swath of
industries. The recent large-scale deployment of Large Language Models (LLMs) has simultaneously
boosted human productivity while sparking concern over safety (e.g., hallucinations, bias, and
privacy). We have seen industry leaders, such as Google, Meta, and OpenAI, embroiled in controversy
surrounding bias and misinformation (Brewster, 2024; Robertson, 2024; White, 2024), safety (Jacob,
2024; Seetharaman, 2024; White, 2023), as well as legality and ethics (Bruell, 2023; Metz et al.,
2024; Moreno, 2023) in their development and deployment of LLMs. Furthermore, irresponsible
deployment of LLMs runs the risk of allowing adversaries the ability to spread misinformation or
propaganda (Barman et al., 2024; Neumann et al., 2024; Sun et al., 2024). Unfortunately, a consistent
and industry-wide solution to oversee safe AI deployment remains elusive.

Naturally, one such solution to mitigate these dangers is for increased governmental regulation over
AI deployment. In the United States, there have been some strides, on federal (House, 2023) and state
levels (Information, 2024), to regulate the safety and security of large-scale AI systems (including
LLMs). While these recent executive orders and bills highlight the necessity to develop safety
standards and enact safety and security protocols, few details are offered. This follows a consistent
trend of well-deserved scrutiny towards the lack of AI regulation without the development of rigorous
and realistic mathematical frameworks to regulate. Our work sets out to solve this disconnect by
proposing a novel regulatory framework that a regulator can follow to not only strictly enforce the
safety of deployed AI models, but simultaneously incentivize the production of safer AI models.

The goal of our work is to formulate the AI regulatory process mathematically, and subsequently
develop a mechanism to incentivize safer development and deployment of AI models. Specifically,
we formulate the AI regulatory process as an all-pay auction, where agents (companies) submit their
models to a regulator. The regulator’s job is twofold: (a) prohibit deployment of models that fail
to meet prescribed safety thresholds, and (b) incentivize safe model production and deployment
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Figure 1: Step-by-Step SIRA Schematic. (Step 0) The regulator sets a safety threshold, ϵ, having a
corresponding price, pϵ, required to achieve ϵ. (Step 1) Agents evaluate their total value, Vi, from
model deployment value (vdi ) and potential regulator compensation (vpi ). Agents only participate
if their total value exceeds pϵ. (Step 2) Participating agents submit their models to the regulator,
accompanied by their bid bi, which reflects the amount spent to improve their model’s safety level.
Models with bids below pϵ are automatically rejected. (Step 3) The submitted models are randomly
paired, and the safer model (i.e., the higher bid) in each pair wins the comparison. In this example,
agent 3 wins since b3 > b1. (Step 4) Winning models receive both a premium and deployment value
(i.e., agent 3 in this example wins premium vp3 and deployment value vd3 ), while losing models receive
only the deployment value (i.e., agent 1 in this example wins deployment value vd1 only).

by providing additional rewards to agents that submit safer models than their peers. We design
an auction-based regulatory mechanism, with a novel reward-payment protocol, that emits Nash
Equilibria at which agents develop and deploy models safer than the prescribed safety threshold.

Summary of Contributions. In summary, the main contributions of our paper are as follows.

(AI Regulation): We propose a Safety-Incentivized Regulatory Auction (SIRA) mechanism, offer-
ing a simple yet practical approach to AI regulation.

(Safety-First): We establish, through derived Nash Equilibria, that agents are incentivized to
submit models that surpass the required safety threshold.

(Effective): Empirical results demonstrate that SIRA increases model safety by over 20% and
boosts participation rates by 15% compared to baseline regulatory mechanisms.

2 RELATED WORKS

Regulation Frameworks for Artificial Intelligence. A handful of work focuses on regulation
frameworks for AI (de Almeida et al., 2021; Jagadeesan et al., 2024; Rodríguez et al., 2022; Yaghini
et al., 2024). First, de Almeida et al. (2021) details the need for AI regulation and surveys existing
proposals. The proposals are ethical frameworks detailing specific ethical decisions to make and
dilemmas to address. These proposals lack a mathematical framework to incentivize provably safer
models. Rodríguez et al. (2022) utilize AI models to detect collusive auctions. This work is related
to our own but in reverse: AI is applied to regulate auctions and ensure that they are not collusive.
In contrast, our work aims to use auctions to regulate AI deployment. Jagadeesan et al. (2024)
focuses on reducing barriers to entry for smaller companies who are competing against larger and
more established incumbent companies. A multi-objective high-dimensional regression framework is
proposed to capture “reputational damage” for companies who deploy unsafe AI models. This work
allows varying levels of safety constraints, where newer companies face less severe constraints in
order to spur their entry into the market, which is unrealistic in many settings and only considers
simple linear-regression models. The closest related work to ours, Yaghini et al. (2024), proposes
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a regulation game for ensuring privacy and fairness that is formulated as a Stackelberg game. This
game is a multi-agent optimization problem that is also multi-objective (for fairness and privacy).
An equilibrium-search algorithm is presented to ensure that agents remain on the Pareto frontier of
their objectives (although this frontier is estimated algorithmically). Notably, Yaghini et al. (2024)
considers only one model builder (agent) and multiple regulators that provide updates to the agent’s
strategy. We consider a more realistic setup, where there are multiple agents and a single regulator
whose goal is to incentivize safer model deployment. We do not believe that it is the regulator’s
job to collaborate with agents to optimize their strategy. Furthermore, our mechanism is simple and
efficient; we do not require Pareto frontier estimation or multiple rounds of optimization.

All-Pay Auctions. Compared to the dearth of literature in regulatory frameworks for AI, all-
pay auctions are well-researched (Amann & Leininger, 1996; Baye et al., 1996; Bhaskar, 2018;
DiPalantino & Vojnovic, 2009; Gemp et al., 2022; Goeree & Turner, 2000; Siegel, 2009; Tardos,
2017). These works formulate specific all-pay auctions and determine their equilibria. Some works
consider settings where agents have complete information about their rivals’ bids (Baye et al.,
1996) while others consider incomplete information, such as only knowing the distribution of agent
valuations (Amann & Leininger, 1996; Bhaskar, 2018; Tardos, 2017). One major application of
all-pay auctions are crowd-sourcing competitions. Many agents participate to win a reward, with
those losing still incurring a cost for their time, effort, etc. DiPalantino & Vojnovic (2009) is one of
the first works to model crowd-sorucing competitions as an all-pay auction. Further research, such as
Gemp et al. (2022), have leveraged AI to design all-pay auctions for crowd-sourcing competitions.
Instead of crowd-sourcing, our work formulates the AI regulatory process as an asymmetric and
incomplete all-pay auction. We leverage previous analysis in this setting (Amann & Leininger, 1996;
Bhaskar, 2018; Tardos, 2017) to derive equilibria.

3 THE REGULATORY AI SETTING

There exists a regulator R with the power to set and enforce laws and regulations (e.g., U.S. govern-
ment regulation on lead exposure). The regulator wants to regulate AI model deployment, by ensuring
that all models meet a given safety threshold ϵ ∈ (0, 1), e.g., the National Institute for Occupational
Safety and Health regulates that N95 respirators filter out at least 95% of airborne particles. If a
model does not reach the safety criteria ϵ, then the model is deemed unsafe and the regulator bars
deployment. On the other side, there are n rational model-building agents. Agents seek to maximize
their own benefit, or utility.

Bidding & Evaluation. By law, each agent i must submit, or bid in auction terminology, its
model wi ∈ Rd for evaluation to the regulator before it can be approved for deployment. Let
S(w;x) : Rd → R+ be a safety metric that outputs a safety level (the larger the better) for model
w given data x. In effect, each agent, given its own data xi, bids a safety level sAi := S(wi;xi)
to the regulator. Subsequently, the regulator, using its own data xR, independently evaluates the
agent’s safety level bid as sRi := S(wi;xR). We assume that agent and regulator evaluation data is
independent and identically distributed (IID) xi, xR ∼ D.

Assumption 1. Agent and regulator evaluation data comes from the same distribution xi, xR ∼ D.

This assumption is often realistic in regulatory settings, because both agents and regulators typically
rely on standardized or widely accepted datasets for model evaluation, ensuring a fair and unbiased
assessment of safety levels. For instance, when assessing LLMs, common datasets like benchmarks for
toxicity or bias are employed consistently across evaluations, reflecting real-world data distributions.
Therefore, it is reasonable to define agent i’s safety level bid as si := Ex∼D[S(wi;x)]. We address
scenarios where evaluation data may not follow the IID assumption in Section 7.

The Price of Safety. We assume that there exists a strictly increasing function M : (0, 1) → (0, 1)
that determines the “price of safety” (i.e., maps safety into cost). Simply put, safer models cost more
to attain. As a result, we define the price of attaining ϵ safety as pϵ := M(ϵ).
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Assumption 2. There exists a strictly increasing function M that maps safety to cost.

The assumption that a strictly increasing function M maps safety to cost is realistic, because achieving
higher safety levels typically requires greater resources. Safer models often demand more data,
advanced tuning, and extensive validation, all of which increase costs. Thus, defining the price of
safety as pϵ := M(ϵ), where M is strictly increasing, reflects the practical trade-off that safer models
cost more to develop.

Agent Costs. Unfortunately for agents, training a safer model comes with added cost. Consequently,
each agent i must decide how much money to bid, or spend, bi to make its model safer. By Assumption
2, the resulting safety level of an agent’s model will be si = M−1(bi).

Agent Values. (1) Model deployment value vdi . While it costs more for agents to produce safer models,
they gain value from having their models deployed. Intuitively, this can be viewed as the expected
value vdi of agent i’s model. The valuation for model deployment varies across agents (e.g., Google
may value having its model deployed more than Apple). (2) Premium reward value vpi . Beyond value
for model deployment, the regulator can also offer additional, or premium, compensation valued
as vpi by agents (e.g., tax credits for electric vehicle producers or Fast Track and Priority Review
of important drugs by the U.S. Food & Drug Administration). The regulator provides additional
compensation to agents whose models demonstrate safety levels exceeding the prescribed threshold.
However, the value of this compensation varies across agents due to differing internal valuations. It
is unrealistic for the regulator to compensate all agents meeting the safety threshold due to budget
constraints. Therefore, we limit the additional rewards to a top-performing half of agents who surpass
the threshold, ensuring that compensation targets those contributing the most to enhanced safety
while maintaining feasibility for the regulator.

Value Distribution. We define the total value for each agent i as Vi := vdi + vpi , which represents the
sum of the deployment value and premium compensation. Although these values can vary widely
in practice, we normalize {Vi}ni=1 for all n agents to be between 0 and 1 for analytical tractability,
allowing us to work within a standardized range. Consequently, the price to achieve the safety
threshold ϵ is also normalized to fall within the (0, 1) interval, i.e., pϵ ∈ (0, 1).

The proportion of total value allocated to deployment versus compensation is determined by a scaling
factor λi ∼ Dλ(0, 1/2). Therefore, the deployment value is vdi := (1 − λi)Vi, and the premium
compensation value is vpi := λiVi. Both Vi and λi are private to each agent, though the distributions
DV and Dλ are known by participants. We set the maximum allowable factor at λi = 1/2, reflecting
the realistic constraint that compensation should not exceed deployment value. Although our results
primarily consider λi ≤ 1/2, theoretical extensions can be made for scenarios where λi > 1/2.

All-Pay Auction Formulation. Overall, agents face a trade-off: producing safer models garners
value, via the regulator, but incurs larger costs. Furthermore, in order to attain the rewards detailed in
Section 3, agents must submit a model with safety level at least as large as ϵ. We can formulate this
problem as an asymmetric all-pay auction with incomplete information (Amann & Leininger, 1996;
Bhaskar, 2018; Tardos, 2017). The problem is an all-pay auction since agents incur an unrecoverable
cost, safety training costs, when submitting their model to regulators. The problem is asymmetric
with incomplete information since valuations Vi are private and differ for each agent.

Agent Objective. The objective for each model-building agent i, is to maximize its own utility ui.
Namely, each agent seeks to determine an optimal safety level to bid to the regulator bi. However,
depending upon the all-pay auction formulation, agents would need to take into account all other
agents’ bids b−i in order to determine their optimal bid b∗i ,

b∗i := argmax
bi

ui(bi; b−i). (1)

A major portion of our work is constructing an auction-based mechanism, thereby designing the
utility of each agent, such that participating agents maximize their utility when they bid more than
“the price to obtain the minimum safety threshold”, i.e., b∗i > pϵ. We begin by providing a simple
mechanism, already utilized by regulators, that does not accomplish this goal, before detailing our
auction-based mechanism SIRA that provably ensures that b∗i > pϵ for all agents.
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4 RESERVE THRESHOLDING: BARE MINIMUM REGULATION

The simplest method to ensure model safety is for the regulators to set a reserve price, or minimum
acceptable safety. We term this mechanism a multi-winner reserve thresholding auction, where the
regulator awards a deployment reward, vdi , to each agent whose submitted model meets or exceeds
the safety threshold ϵ. Within this auction, each agent i’s utility is mathematically formulated as,

ui(bi; b−i) =

{
−bi if bi < pϵ,

vdi − bi if bi ≥ pϵ.
(2)

The formulation above, however, is ineffective at incentivizing agents to produce models that are
safer than the ϵ threshold.

Theorem 1 (Reserve Thresholding Nash Equilibrium). Under Assumption 2, agents participating
in Reserve Thresholding (2) have an optimal bidding strategy and utility of,

b∗i = pϵ, ui(b
∗
i ; b−i) = vdi − pϵ, (3)

and submit models with the following safety level,

s∗i =

{
ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.
(4)

When a regulator implements reserve thresholding, as formally detailed in Theorem 1, agents exert
minimal effort, submitting models that just meet the required safety threshold ϵ. While this approach
ensures that all deployed models satisfy the minimum safety requirements, it fails to encourage agents
to build models with safety levels exceeding ϵ. Additionally, agents whose deployment rewards are
less than the cost of achieving the safety threshold, i.e., vdi < pϵ, have no incentive to participate in
the regulatory process, leading to reduced participation rates, as detailed in Remark 1.
Remark 1 (Lack of Incentive). Each agent is only incentivized to submit a model with safety
s∗i = ϵ. Our goal is to construct a mechanism that incentivizes agents to build models which reach
safety criteria greater than the minimum requirement: s∗i > ϵ.

5 SAFETY-INCENTIVIZED REGULATORY AUCTIONS (SIRA)

To alleviate the lack of incentives within simple regulatory auctions, such as the one in Section 4,
we propose a regulatory all-pay auction that emits an equilibrium where agents submit models with
safety levels larger than ϵ.

Algorithm Description. The core component of our auction is that agent safety levels are randomly
compared against one another, with the regulator rewarding those having the safer model with
premium compensation. Only agents with models that achieve a safety level of ϵ or higher are eligible
to participate in the comparison process; models that do not meet this threshold are automatically
rejected. The detailed algorithmic block of SIRA is depicted in Algorithm 1.

Agent Utility. The utility for each agent i is therefore defined as in Equation (5).
ui(bi; b−i) =

(
vdi + vpi · 1(if i wins comparison)

)
· 1(if bi≥pϵ) − bi. (5)

Per regulation guidelines, the safety criteria of an accepted model must at least be ϵ. Equation (5)
dictates that values are only realized by each agent if their model has a bid larger than the required
cost to reach ϵ safety, 1(if bi≥pϵ). Furthermore, agents only realize additional compensation value
vpi from the regulator if their safety level outperforms a randomly selected agent, 1(if i wins comparison).
Any agent that bids bi = 1 will automatically win and realize both vpi and vwj . It is important to note
that the cost that every agent incurs when building its model is sunk: if the model is not cleared for
deployment, the cost −bi is still incurred. We rewrite the agent utility in a piece-wise manner below,

ui(bi; b−i) =


−bi if bi < pϵ,

vdi − bi if bi ≥ pϵ and bi < bj randomly sampled agent bid bj ,

vdi + vpi − bi if bi ≥ pϵ and bi > bj randomly sampled agent bid bj .

(6)

5
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Algorithm 1 SIRA: Safety-Incentivized Regulatory Auction

Require: n model-building agents and a safety level ϵ set by regulator R (corresponding price pϵ)
1: Each agent i receives their total value Vi and partition ratio λi from “nature”
2: Agents determine their optimal bids b∗i and corresponding utility ui(b

∗
i ) ▷ via Corollaries 1 or 2

3: Agents decide to participate, the set of participating agents is P = {j ∈ [n]
∣∣ uj(b

∗
j ;b−i) > 0}

4: for participating agents j ∈ P do
5: Spend b∗j to build a model, with safety level sj = M−1(b∗j ), and submit it to the regulator
6: Regulator verifies all model safety levels, clearing models for deployment when sj ≥ ϵ ∀j ∈ P
7: Regulator pairs up models, awarding compensation valued at vpi to agents with the safer model

By introducing additional compensation, vpi , and, crucially, conditioning it on whether an agent’s
model is safer than that of another random agent, we seek to make it rational for agents to bid more
than the price to obtain the minimum safety threshold (unlike Theorem 1).

Incentivizing Agents to Build Safer Models. We establish a guarantee that agents participating in
SIRA maximize their utility with an optimal bid b∗i that is larger than “the price required to attain ϵ
safety” (i.e., b∗i > pϵ) in Theorem 2 below. Furthermore, agents bid in proportion to the value for
additional compensation vpi that the regulator offers for extra safe models.

Theorem 2. Agents participating in SIRA (6) will follow an optimal bidding strategy b̂∗i of,

b̂∗i := pϵ + vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz > pϵ, (7)

where Fv(·) denotes the cumulative density function of the random premium reward variable
corresponding to the premium reward vpi = Viλi.

Theorem 2 applies to any distribution for Vi and λi on [0, 1] and [0, 1/2], i.e., Vi ∼ DV (0, 1) and
λi ∼ Dλ(0, 1/2), respectively. Determining specific optimal bids, utility, and model safety levels
requires given distributions for Vi and λi. Analysis of all-pay auctions (Amann & Leininger, 1996;
Bhaskar, 2018; Tardos, 2017), as well as many other types of auctions, often assume a Uniform
distribution for valuations. Therefore, our first analysis of SIRA, below in Corollary 1, presumes
Uniform distributions for Vi and λi.

(Special Case 1) Uniform Vi and λi: Optimal Agent Strategy. Corollary 1 determines that a
participating agent’s optimal strategy to maximize its utility is to submit a model with safety levels
larger than ϵ when their values Vi and λi come from a Uniform distribution.
Corollary 1 (Uniform Nash Bidding Equilibrium). Under Assumption 2, for agents having total
value Vi and scaling factor λi both stemming from a Uniform distribution, with vdi = (1− λi)Vi,
and vpi = λiVi, their optimal bid and utility participating in SIRA (6) are,

b∗i := min{b̂∗i , 1}, b̂∗i =

{
pϵ +

(vp
i )

2 ln(pϵ)

pϵ−1 if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2(ln(2vp

i )−1/2)+p2
ϵ

8(pϵ−1) if pϵ

2 ≤ vpi ≤ 1
2 ,

(8)

ui(b
∗
i ; b−i) =

{
2(vp

i )
2 ln(pϵ)

pϵ−1 + vdi − b∗i if 0 ≤ vpi ≤ pϵ

2 ,
2(vp

i )
2(ln(2pϵ)−1)+pϵ

pϵ−1 + vdi − b∗i if pϵ

2 ≤ vpi ≤ 1
2 .

(9)

Agents participating in SIRA submit models with the following safety,

s∗i :=

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.
(10)

(Special Case 2) Beta Vi and Uniform λi: Optimal Agent Strategy. In many instances, a more
realistic distribution for Vi is a Beta distribution with α, β = 2. This choice of distribution looks
more Gaussian, with the bulk of the probability density centered in the middle, and as such is realistic

6
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Figure 2: Validation of Uniform Nash Bidding Equilibrium. Agent utility is maximized when
agents follow the theoretically optimal bidding function shown in Equation (8). Across varying safety
prices, pϵ = 0.25 (left), 0.5 (middle), 0.75 (right), agents attain less utility when they deviate from
the optimal bid (red line) derived in Corollary 1.

when agent values do not congregate amongst one another and outliers (near 0 or 1) are rare. We
analyze the performance of SIRA under this more realistic scenario in Corollary 2. Corollary 2 states
that, under a Beta(2,2) distribution for Vi, agent i maximizes its utility with an optimal bid b∗i larger
than the price to attain ϵ safety, b∗i > pϵ, resulting in a model safer than the ϵ threshold. Furthermore,
Corollaries 1 and 2 surpass the baseline optimal bid b∗i = pϵ for Reserve Thresholding (Theorem 1).
Corollary 2 (Beta Nash Bidding Equilibrium). Under Assumption 2, let agents have total value
Vi and scaling factor λi stem from Beta (α = β = 2) and Uniform distributions respectively,
with vdi = (1 − λi)Vi and vpi = λiVi. Denote the CDF of the Beta distribution on [0, 1] as
Fβ(x) = 3x2 − 2x3. The optimal bid and utility for agents participating in SIRA (6) are,

b∗i := min{b̂∗i , 1}, b̂∗i =

pϵ +
3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2
(
6(vp

i )
2−8vp

i +3
)
+p3

ϵ(3pϵ−4)

8(1−Fβ(pϵ))
if pϵ

2 ≤ vpi ≤ 1
2 ,

(11)

u(b∗i ; b−i) =

vdi +
6(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
− b∗i for 0 ≤ vpi ≤ pϵ

2 ,

vdi +
vp
i

(
8(vp

i )
3−12(vp

i )
2+6vp

i +p2
ϵ(2pϵ−3)

)
1−Fβ(pϵ)

− b∗i for pϵ

2 ≤ vpi ≤ 1/2.
(12)

Agents participating in SIRA submit models with the following safety,

s∗i =

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.
(13)

Remark 2 (Improved Model Safety). As shown in Corollaries 1 and 2, participating agents will
submit models that are safer than the regulator’s safety threshold, s∗i = M−1

(
b∗i
)
> ϵ.

Remark 3 (Improved Utility & Participation). Through the introduction of regulator’s premium
compensation, agent utility is improved, in Equations (9) and (12), versus Reserve Thresholding
in Equation (3). As a result, more agents break the zero-utility barrier of entry for participation,
boosting both overall agent utility and participation rate.

Due to space constraints, we place the proofs of Theorems 1 and 2 as well as Corollaries 1 and
2 within Appendix B. We note that since the premium compensation value vpi is a product of two
random variables, the PDF and CDF of vpi becomes a piece-wise function (as shown within Appendix
B). As a result, the optimal bidding and subsequent utility also becomes piece-wise in both Corollaries
1 and 2. We empirically verify the correctness of our computed PDF and CDFs within Appendix C.

6 EXPERIMENTS

Our Section 5 results demonstrate that this safety-incentivized regulatory auction, SIRA, creates incen-
tives for any agents to submit safer models and to participate at higher rates than the baseline Reserve
Thresholding mechanism in Section 4. Below, we validate these theoretical results empirically.
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Figure 3: Validation of Beta Nash Bidding Equilibrium. Akin to the Uniform results, agent utility
is maximized when agents follow the theoretically optimal bidding function shown in Equation (11).
Across varying prices of safety values, pϵ = 0.25 (left), 0.5 (middle), 0.75 (right), agents attain less
utility when they deviate from the optimal bid (red line) derived in Corollary 2.

Experimental Setup. We simulate a regulatory setting with n = 100, 000 agents. Each agent i
receives a random total value Vi from either a Uniform (Corollary 1) or Beta(2,2) (Corollary 2)
distribution. Each agent also receives a scaling factor λi that splits the total value into deployment
vdi = (1− λi)Vi and premium compensation vpi = λiVi values. Once the private values are provided,
agents calculate their bid according to the optimal strategies in Theorem 1 and Corollaries 1 & 2.

Lack of Baseline Regulatory Mechanisms. To the best of our knowledge there are no other
comparable mechanisms for safety regulation in AI. As a result, we compare against the Reserve
Threshold mechanism that we propose in Section 4. While simple, the Reserve Threshold mechanism
is a realistic baseline to compare against; there exist regulatory bodies, like the Environmental
Protection Agency (EPA), that follow similar steps before clearing products (e.g., the EPA authorizes
permits for discharging pollutants into water sources once water quality criteria are met).

Figure 4: Improved Safety and Participation with Uniform Values. When total value stems
from a Uniform distribution Vi ∼ U(0, 1), agents participate at a higher rate in SIRA than Reserve
Thresholding (left) and spend more to train safer models (right).

Verifiable Nash Bidding Equilibria. Our first experimental goal is to validate that the theoretical
bidding functions found in Corollaries 1 and 2 constitute Nash Equilibria. That is, agents receive
worse utility if they deviate from this bidding strategy if all other agents abide by it. To test this, we
compare the optimal bid for a single agent versus 100, 000 others. We vary the single agent’s optimal
bid on a range up to ±50%. We note that comparisons only occur if the other agent’s bid is at least
pϵ, in order to accurately reflect how the auction mechanism in Algorithm 1 functions.

In Figures 2 and 3, we plot the average utility over all 100, 000 comparisons. We find that both
our Uniform and Beta optimal bidding functions maximize agent utility and thus constitute Nash
Equilibria. Interestingly, utility decays much quicker when reducing the bid, since agents are (i) less
likely to win the premium reward and (ii) at risk of losing the value from deployment if the bid does
not reach pϵ. At a certain point, utility increases linearly once the agent continuously fails to bid pϵ.
The linear improvement stems from the agent saving the cost of its bid, −bi, shown in Equation (6).
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Figure 5: Improved Safety and Participation with Beta Values. When total value stems from a
Beta distribution Vi ∼ Beta(α = β = 2), agents participate at a higher rate in SIRA than Reserve
Thresholding (left) and spend more to train safer models (right).

Improved Agent Participation and Bid Size. We find that for both Uniform and Beta(2,2) distribu-
tions, shown in Figures 4 and 5, our mechanism (SIRA) increases participation rates and average bids
by upwards of 15% and 20% respectively. At the endpoints of possible price thresholds, pϵ = 0 and 1,
we find that both mechanisms perform similarly. The reason is that at a low safety threshold price
pϵ ≈ 0, agents are highly likely to have a total value Vi larger than a value close to zero. The inverse
is true for pϵ ≈ 1, where it is unlikely that agents will have a total value Vi larger than a value close to
1. Our mechanism shines when safety threshold prices are in the middle; the premium compensation
offered by the regulator incentivizes agents to participate and bid more for the chance to win.

7 CONCLUSION AND FUTURE WORK

As AI models grow, the risks associated with their misuse become increasingly significant, particularly
given their often opaque, black-box nature. Establishing robust algorithmic safeguards is crucial
to protect users from unethical, unsafe, or illegally-deployed models. In this paper, we present a
regulatory framework designed to ensure that only models deemed safe by a regulator can be deployed
for public use. Our key contribution is the development of an auction-based regulatory mechanism
that simultaneously (i) enforces safety standards and (ii) provably incentivizes agents to exceed
minimum safety thresholds. This approach encourages broader participation and the development of
safer models compared to baseline regulatory methods. Empirical results confirm that our mechanism
increases agent participation by 15% and raises agent spending on safety by 20%, demonstrating its
effectiveness to promote safer AI deployment.

Future Work. While this work addresses key challenges in regulating AI safety, several directions
remain open for future exploration:

(1) Model Evaluation: Creating a realistic protocol for the regulator to evaluate submitted model
safety levels is important to ensure agents do not skirt around safety requirements. While we leave
this problem for future work, one possible solution is that agents can either provide the regulator API
access to test its model or provide the model weights directly to the regulator. Truthfulness can be
enforced via audits and the threat of legal action.

(2) Extension to Heterogeneous Settings: Extending our mechanism to heterogeneous scenarios,
where evaluation data for agents and regulators differs, is a critical next step. Real-world data
distributions often vary across contexts, and understanding how these variations affect both model
safety and agent strategies will create a more robust regulatory mechanism. While explicit protocols or
mathematical formulations are left as future work, we have a few ideas. One idea could be establishing
a data-sharing framework between agents and the regulator, where each participating agent must
contribute part of (or all of) its data to the regulator for evaluation. If data can be anonymized, then
this would be a suitable solution. Another idea could be that the regulator collects data on its own, and
can compare its distribution of data versus each participating agents’ data distribution. If distributions
greatly differ, then the regulator could collect more data or resort to the previous data-sharing method.

9
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A NOTATION TABLE

Table 1: Notating and Defining all Variables Listed Within SIRA.

Definition Notation
Regulator R

Number of Agents n
Safety Threshold ϵ

Safety-to-Cost Function M
Price of Attaining Safety pϵ

Agent i Bid bi
All Other Agents Bids b−i

Agent i Utility ui

Agent i Model Safety si
Total Value for Agent i Vi

Total Value Distribution DV

Agent i Scaling Factor λi

Scaling Factor Distribution Dλ

Deployment Value for Agent i vdi
Premium Compensation Value for Agent i vpi

Probability Density Function for Premium Compensation fv
Cumulative Distribution Function for Premium Compensation Fv

B THEORETICAL PROOFS

Below, we provide the full proofs of our Theorems and Corollaries presented within our work.

B.1 PROOF OF THEOREM 1

Theorem 1 (Restated). Under Assumption 2, agents participating in Reserve Thresholding (2) have
an optimal bidding strategy and utility of,

b∗i = pϵ, ui(b
∗
i ; b−i) = vdi − pϵ,

and submit models with the following safety level,

s∗i =

{
ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.

Proof. From agent i’s utility within Reserve Thresholding, Equation (2), it is clear that ui(0) = 0.
We proceed to break the proof up into cases where agents have (1) a deployment value equal to or
less than the price of safety pϵ and (2) a deployment value larger than pϵ.

Case 1: vdi ≤ pϵ. From Equation (2), if vdi ≤ pϵ then an agent will never attain positive utility,

max
bi∈(0,1]

vdi · 1bi≥pϵ
− bi ≤ max

bi∈(0,1]
pϵ · 1bi≥pϵ

− bi = max
bi∈[pϵ,1]

pϵ − bi = pϵ − pϵ = 0. (14)

argmax
bi∈(0,1]

ui(bi) = pϵ. (15)

For an agent with deployment value at most equal to pϵ, the upper bound on attainable utility when it
participates, i.e., bi ∈ (0, 1], is zero (Equation (14)). This maximum utility is attained when bidding
bi = pϵ (Equation (15)). Thus, agents have nothing to gain by participating, as they already start at
zero utility ui(0) = 0. As a result, agents will not submit a model, s∗i = M(0) = 0.
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Case 2: vdi > pϵ. Similar steps to Case 1 above,

max
bi∈(0,1]

vdi · 1bi≥pϵ − bi > max
bi∈(0,1]

pϵ · 1bi≥pϵ − bi = max
bi∈[pϵ,1]

pϵ − bi = pϵ − pϵ = 0. (16)

b∗i = argmax
bi∈(0,1]

ui(bi) = pϵ −→ ui(b
∗
i ) = vdi − pϵ > 0. (17)

An agent with deployment value larger than pϵ will have a maximal utility that is non-negative when
it participates (Equation (16)). Maximal utility is attained when bidding b∗i = pϵ (Equation (17)).
Furthermore, at this optimal bid, the corresponding safety level is s∗i = M−1(pϵ) = ϵ.

B.2 PROOF OF THEOREM 2

Theorem 2 (Restated). Agents participating in SIRA (6) will follow an optimal bidding strategy b̂∗i
of,

b̂∗i := pϵ + vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz > pϵ,

where Fv(·) denotes the cumulative density function of the random variable corresponding to the
premium reward vpi = Viλi.

Proof. Before beginning our proof, we note that each agent i cannot alter its own valuation vpi for
winning the all-pay auction. Each valuation is private (unknown by other agents) and predetermined:
total reward Vi and partition factor λi are randomly selected from a given distribution D on [0, 1]
and [0, 1/2] respectively by “nature”. We define the cumulative distribution function for the auction
reward vpi = Viλi as Fv(·) and the probability distribution function as fv(·).

From Equation (6), we find that an agent i that does not participate (i.e., bi = 0) receives no utility,
ui(0) = 0. (18)

An agent receives negative utility if its bid does not reach the price of safety pϵ,
max

bi∈(0,pϵ)
ui(bi) < 0. (19)

Consequently, rational agents will either opt not to participate (notated as the set of agents N ) or
participate (notated as the set of agents P ) and bid at least pϵ. We define these groups as,

N = {i ∈ [n] | max
bi∈[0,1]

ui(bi) ≤ 0}, (20)

P = {i ∈ [n] | max
bi∈[0,1]

ui(bi) > 0}. (21)

From here, we only focus on agents i ∈ P which participate (i.e., have utility to be gained by
participating). As a result from Equations (18) and (19), Equation (21) transforms into,

P = {i ∈ [n] | max
bi∈[pϵ,1]

ui(bi) > 0}. (22)

The result of (22) is that participating agents bid at least pϵ. This is important, as every participating
agent knows that all rival agents j they will possibly be compared against have bj ∈ [pϵ, 1]. Agents
can dictate how much they bid, and we design our auction to ensure that agents bid in proportion to
their valuation.

Following previous literature (Amann & Leininger, 1996; Bhaskar, 2018; Tardos, 2017), we desire
a monotone increasing bidding function b(·) : [0, 1/2] → [pϵ, 1] that each agent follows. We will
prove that each agent i’s best strategy is to bid its own valuation b(vpi ) irrespective of other agent
bids (Nash Equilibrium). Using a bidding function transforms agent utility,

ui(bi) =
(
vdi + vpi · 1(if i wins auction)

)
· 1(if bi≥pϵ)︸ ︷︷ ︸

satisfied for agents i∈P

− bi,

= P
(
b(bi) > b(bj)

)
vpi − b(bi) + vdi , bj ∼ randomly sampled agent bid. (23)
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Since b(x) is monotone increasing up to 1, agents bidding b = 1 automatically win, the utility
function above can be simplified as,

ui(bi) = vpi P
(
bi > bj

)
− b(bi) + vdi , bj ∼ randomly sampled agent bid,

= vpi Fv(bi)− b(bi) + vdi . (24)

Taking the derivative and setting it equal to zero yields,

d

dbi
ui(bi) = vpi fv(bi)− b′(bi) = 0. (25)

As agents bid in proportion to their valuation, we solve the first-order equilibrium conditions at
bi = vpi ,

b′(vpi ) = vpi fv(v
p
i ). (26)

Integrating by parts, and knowing ϵ is the minimum bid (b(0) = pϵ), reveals our optimal bidding
function,

b(vpi )− b(0) =

∫ x

0

vpi fv(v
p
i )dv

p
i ,

b(vpi )− pϵ = vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz,

b̂∗i = b(vpi ) : = pϵ + vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz. (27)

B.3 PROOF OF COROLLARY 1

Corollary 1 (Restated). Under Assumption 2, for agents having total value Vi and scaling factor λi

both stemming from a Uniform distribution, with vdi = (1− λi)Vi, and vpi = λiVi, their optimal bid
and utility participating in SIRA (6) are,

b∗i := min{b̂∗i , 1}, b̂∗i =

{
pϵ +

(vp
i )

2 ln(pϵ)

pϵ−1 if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2(ln(2vp

i )−1/2)+p2
ϵ

8(pϵ−1) if pϵ

2 ≤ vpi ≤ 1
2 ,

ui(b
∗
i ; b−i) =

{
2(vp

i )
2 ln(pϵ)

pϵ−1 + vdi − b∗i if 0 ≤ vpi ≤ pϵ

2 ,
2(vp

i )
2(ln(2pϵ)−1)+pϵ

pϵ−1 + vdi − b∗i if pϵ

2 ≤ vpi ≤ 1
2 .

Agents participating in SIRA submit models with the following safety,

s∗i :=

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.

Proof. Let vpi := Viλi, where Vi ∼ U [pϵ, 1] and λi ∼ U [0, 1/2]. The reason that Vi is within the
interval [pϵ, 1], is that all participating agents must have a value of at least pϵ or else they would not
have rationale to bid. The smallest value of Vi such that this is possible is pϵ, so it is the lower bound
on this interval. Our first goal is to find the PDF of vpi , fvp

i
(·).

We begin solving for fvp
i
(·) by using a change of variables. For the product of two random variables

v = x1 · x2, let y1 = x1 · x2 and y2 = x2. Thus, we find inversely that x2 = y2 and x1 = y1/y2.
Since x1 and x2 are independent and both uniform, we find that,

fy1,y2
(x1, x2) = (

1

1− pϵ
)(

1

1/2− 0
) =

2

1− pϵ
. (28)

When using the change of variables this becomes,

fy1,y2
(y1, y2) = fy1,y2

(x1, x2)|J | =
2

(1− pϵ)y2
, |J | =

∣∣∣∣ (1/y2 −y1/y
2
2

0 1

) ∣∣∣∣ = 1/y2 (29)

14
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Marginalizing out y2 (a non-negative value) yields,

fy1
(y1) =

∫ ∞

0

2

(1− pϵ)y2
dy2. (30)

The bounds of integration depend upon the value of y1. The change of variable to the (y1, y2)
space, where 0 ≤ y1, y2 ≤ 1/2, results in a new region of possible variable values. This region is
a triangle bounded by the three vertices: (0, 0), (pϵ/2, 1/2), and (1/2, 1/2). Thus, the bounds of
marginalization depend upon the value of y1. For 0 ≤ y1 ≤ pϵ/2 we have,

fy1(y1) =

∫ y1/pϵ

y1

2

(1− pϵ)y2
dy2 =

2

(1− pϵ)
[ln(y2)

∣∣y1/pϵ

y1
] =

2 ln(pϵ)

(pϵ − 1)
. (31)

For pϵ ≤ y1 ≤ 1/2 we have,

fy1(y1) =

∫ 1/2

y1

2

(1− pϵ)y2
dy2 =

2

(1− pϵ)
[ln(y2)

∣∣1/2
y1

] =
2 ln(2y1)

(pϵ − 1)
. (32)

Thus, as a piecewise function the PDF is formally,

fy1(y1) =

{
2 ln(pϵ)
(pϵ−1) for 0 ≤ y1 ≤ pϵ

2 ,
2 ln(2y1)
(pϵ−1) for pϵ

2 ≤ y1 ≤ 1/2.
(33)

Now, the CDF is determined through integration,

Fy1(y1) =

∫ y1

0

fy1(y1)dy1 =

{
2y1 ln(pϵ)
(pϵ−1) for 0 ≤ y1 ≤ pϵ

2 ,
2y1(ln(2y1)−1)+pϵ

(pϵ−1) for pϵ

2 ≤ y1 ≤ 1/2.
(34)

We can integrate the CDF to get,∫ y1

0

Fy1
(y1) =

{
y2
1 ln(pϵ)
(pϵ−1) for 0 ≤ y1 ≤ pϵ

2 ,
4y2

1(2 ln(2y1)−3)+8y1pϵ−p2
ϵ

8(pϵ−1) for pϵ

2 ≤ y1 ≤ 1/2.
(35)

Plugging all of this back into Equation (7) yields,

b̂∗i =

{
pϵ + vpi

2vp
i ln(pϵ)

pϵ−1 − (vp
i )

2 ln(pϵ)

pϵ−1 ,

pϵ + vpi
2vp

i (ln(2v
p
i )−1)+pϵ

(pϵ−1) − 4(vp
i )

2(2 ln(2vp
i )−3)+8vp

i pϵ−p2
ϵ

8(pϵ−1) ,

=

{
pϵ +

(vp
i )

2 ln(pϵ)

pϵ−1 if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2(ln(2vp

i )−1/2)+p2
ϵ

8(pϵ−1) if pϵ

2 ≤ vpi ≤ 1
2 .

(36)

Since bi cannot be larger than 1, we cap the bidding function at one via,

b∗i := min{b̂∗i , 1}. (37)

The utility gained by agent i for using such a bidding function is,

u(b∗i ) =

{
vdi − b∗i +

2(vp
i )

2 ln(pϵ)

pϵ−1 for 0 ≤ vpi ≤ pϵ

2 ,

vdi − b∗i +
2(vp

i )
2(ln(2vp

i )−1)+pϵ

(pϵ−1) for pϵ

2 ≤ vpi ≤ 1/2.
(38)

When this utility is larger than 0, the agent will participate otherwise the agent will not submit a
model to the regulator. Finally, we can find the optimal safety level by using Assumption 2,

s∗i := M−1
(
b∗i
)
. (39)
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B.4 PROOF OF COROLLARY 2

Corollary 2 (Restated). Under Assumption 2, let agents have total value Vi and scaling factor λi

stem from Beta (α = β = 2) and Uniform distributions respectively, with vdi = (1 − λi)Vi and
vpi = λiVi. Denote the CDF of the Beta distribution on [0, 1] as Fβ(x) = 3x2 − 2x3. The optimal
bid and utility for agents participating in SIRA (6) are,

b∗i := min{b̂∗i , 1}, b̂∗i =

pϵ +
3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2
(
6(vp

i )
2−8vp

i +3
)
+p3

ϵ(3pϵ−4)

8(1−Fβ(pϵ))
if pϵ

2 ≤ vpi ≤ 1
2 ,

u(b∗i ; b−i) =

vdi +
6(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
− b∗i for 0 ≤ vpi ≤ pϵ

2 ,

vdi +
vp
i

(
8(vp

i )
3−12(vp

i )
2+6vp

i +p2
ϵ(2pϵ−3)

)
1−Fβ(pϵ)

− b∗i for pϵ

2 ≤ vpi ≤ 1/2.

Agents participating in SIRA submit models with the following safety,

s∗i =

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.

Proof. Similar to Corollary 1, we begin solving for fvp
i
(·) using a change of variables. For the

product of two random variables v = x1 · x2, let y1 = x1 · x2 and y2 = x2. Inversely, x2 = y2 and
x1 = y1/y2. While x1 and x2 are independent, x1 comes from a Beta distribution and x2 from a
Uniform one. The PDF and CDF of a Beta distribution, with α = β = 2, on [0, 1] are defined as,

fβ(x) := 6x(1− x), (40)

Fβ(x) := 3x2 − 2x3. (41)

Now, the PDF over y1, y2 is defined as,

fy1,y2(x1, x2) = (
6x1(1− x1)

1− Fβ(pϵ)
)(

1

1/2− 0
) =

12x1(1− x1)

1− Fβ(pϵ)
. (42)

When using the change of variables this becomes,

fy1,y2
(y1, y2) = fy1,y2

(x1, x2)|J | =
12y1(1− y1

y2
)

(1− Fβ(pϵ))y22
, |J | =

∣∣∣∣ (1/y2 −y1/y
2
2

0 1

) ∣∣∣∣ = 1/y2

(43)
Marginalizing out y2 (a non-negative value) yields,

fy1
(y1) =

12y1
1− Fβ(pϵ)

∫ ∞

0

1

y22
− y1

y32
dy2. (44)

The bounds of integration depend upon the value of y1. The change of variable to the (y1, y2)
space, where 0 ≤ y1, y2 ≤ 1/2, results in a new region of possible variable values. This region is
a triangle bounded by the three vertices: (0, 0), (pϵ/2, 1/2), and (1/2, 1/2). Thus, the bounds of
marginalization depend upon the value of y1. For 0 ≤ y1 ≤ pϵ/2 we have,

fy1(y1) =
12y1

1− Fβ(pϵ)

∫ y1/pϵ

y1

1

y22
− y1

y32
dy2 =

12y1
1− Fβ(pϵ)

[− 1

y2
+

y1
2y22

∣∣y1/pϵ

y1
]

=
12y1

1− Fβ(pϵ)
[−pϵ

y1
+

p2ϵ
2y1

+
1

y1
− 1

2y1
] =

6(p2ϵ − 2pϵ + 1)

1− Fβ(pϵ)
. (45)

For pϵ ≤ y1 ≤ 1/2 we have,

fy1(y1) =
12y1

1− Fβ(pϵ)

∫ 1/2

y1

1

y22
− y1

y32
dy2 =

12y1
1− Fβ(pϵ)

[− 1

y2
+

y1
2y22

∣∣1/2
y1

]

=
12y1

1− Fβ(pϵ)
[−2 + 2y1 +

1

y1
− 1

2y1
] =

6(4y21 − 4y1 + 1)

1− Fβ(pϵ)
. (46)
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Thus, as a piecewise function the PDF is formally,

fy1(y1) =


6(p2

ϵ−2pϵ+1)
1−Fβ(pϵ)

for 0 ≤ y1 ≤ pϵ

2 ,
6(4y2

1−4y1+1)
1−Fβ(pϵ)

for pϵ

2 ≤ y1 ≤ 1/2.
(47)

Now, the CDF is determined through integration,

Fy1(y1) =

∫ y1

0

fy1(y1)dy1 =


6y1(p

2
ϵ−2pϵ+1)

1−Fβ(pϵ)
for 0 ≤ y1 ≤ pϵ

2 ,
2y1(4y

2
1−6y1+3)+p2

ϵ(2pϵ−3)
1−Fβ(pϵ)

for pϵ

2 ≤ y1 ≤ 1/2.
(48)

We can integrate the CDF to get,∫ y1

0

Fy1(y1) =


3y2

1(p
2
ϵ−2pϵ+1)

1−Fβ(pϵ)
for 0 ≤ y1 ≤ pϵ

2 ,

8y1

(
2y3

1−4y2
1+3y1+p2

ϵ(2pϵ−3)
)
+p3

ϵ(4−3pϵ)

8(1−Fβ(pϵ))
for pϵ

2 ≤ y1 ≤ 1/2.
(49)

Plugging all of this back into Equation (7) yields,

b̂∗i =

pϵ + vpi
6vp

i (p
2
ϵ−2pϵ+1)

1−Fβ(pϵ)
− 3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
,

pϵ + vpi
2vp

i (4(v
p
i )

2−6vp
i +3)+p2

ϵ(2pϵ−3)

1−Fβ(pϵ)
− 8vp

i

(
2(vp

i )
3−4(vp

i )
2+3vp

i +p2
ϵ(2pϵ−3)

)
+p3

ϵ(4−3pϵ)

8(1−Fβ(pϵ))
,

=

pϵ +
3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2
(
6(vp

i )
2−8vp

i +3
)
+p3

ϵ(3pϵ−4)

8(1−Fβ(pϵ))
if pϵ

2 ≤ vpi ≤ 1
2 .

(50)

Since bi cannot be larger than 1, we cap the bidding function at one via,

b∗i := min{b̂∗i , 1}. (51)

The utility gained by agent i for using such a bidding function is,

u(b∗i ) =

vdi − b∗i +
6(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
for 0 ≤ vpi ≤ pϵ

2 ,

vdi − b∗i +
vp
i

(
8(vp

i )
3−12(vp

i )
2+6vp

i +p2
ϵ(2pϵ−3)

)
1−Fβ(pϵ)

for pϵ

2 ≤ vpi ≤ 1/2.
(52)

When this utility is larger than 0, the agent will participate otherwise the agent will not submit a
model to the regulator. Finally, we can find the optimal safety level by using Assumption 2,

s∗i := M−1
(
b∗i
)
. (53)

C ADDITIONAL EXPERIMENTS

Within this section, we verify empirically that our computed PDF and CDFs in Corollaries 1 and
2 are correct. To accomplish this, we randomly sample and compute the product of Vi and λi fifty
million times. We then plot the PDF and CDF of the resultant products and compare it with our
theoretical PDF and CDF. The theoretical PDF and CDF for Corollary 1 are defined in Equations
(33) and (34), while those for Corollary 2 are found in Equations (47) and (48). The results of these
simulations, which validate our computed PDFs and CDFs, are shown in Figures 6 and 7. To ensure
correctness, we perform testing on different values of pϵ. As expected, our theory lines up exactly
with our empirical simulations for both Corollaries as well as across varying pϵ.

C.1 SAFETY-COST ABLATION STUDY

In this section, we conduct an ablation study to demonstrate that in realistic settings, safety is mapped
to cost in a monotonically increasing way (as detailed in Assumption 2). While there are many
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Figure 6: Numerical validation of our derivations for fv(v
p
i ) and Fv(v

p
i ), where vpi := Viλi, for Vi

and λi coming from Uniform distributions (Corollary 1). The price of attaining ϵ is set as pϵ = 1/4
(top row) and pϵ = 1/2 (bottom row).

Figure 7: Numerical validation of our derivations for fv(vPi ) and Fv(v
P
i ), where vpi := Viλi, for

Vi coming from a Beta distribution and λi from a Uniform distributions (Corollary 2). The price of
attaining ϵ is set as pϵ = 1/4 (top row) and pϵ = 1/2 (bottom row).
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Figure 8: Strictly monotonic relationship between safety and cost. As the percentage of minority
class data increases (greater cost), the equalized odds metric improves (greater safety) on Fairface.

factors to consider when gauging safe AI deployment, we analyze model fairness, via equalized odds,
for image classification in this study. Equalized odds measures if different groups have similar true
positive rates and false positive rates (lower is better). We train VGG-16 models on the Fairface
dataset (Karkkainen & Joo, 2021) for 50 epochs (repeated ten times with different random seeds),
and consider a gender classification task with race as the sensitive attribute. Models with the largest
validation classification accuracy during training are selected for testing.

Many types of costs exist for training safer models, such as extensive architecture and hyper-parameter
search. In this study, we consider the cost of an agent acquiring more minority class data. Acquiring
more minority class data leads to a larger and more balanced dataset. We simulate various mixtures
of training data, starting from a 95:5 skew and scaling up to fully balanced training data with respect
to the sensitive attribute. In our study, we gauge equalized odds performance on well-balanced test
data for the models trained on various mixtures of data. The results of this ablation study are shown
in Table 2 and Figure 8.

Table 2: Equalized odds performance as minority class data increases.

Minority Class % Mean Equalized Odds Score
5% 22.55

10% 22.31
15% 18.97
20% 17.46
25% 15.78
30% 15.44
35% 13.09
40% 11.01
45% 9.83
50% 9.38

As expected, in Table 2, the equalized odds score decreases (the model becomes safer) when collecting
more minority class data (increased cost). To adjust equalized odds to fit into the setting where
ϵ ∈ (0, 1), we inverted and normalized the original equalized odds score. In Figure 8, one can see
that safety level is indeed monotonically increasing with respect to the cost.
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D REPEATING SIRA AUCTIONS

The current auction structure (Algorithm 1) expects agents to submit a single model trained solely for
the upcoming auction. There is no expectation that the model will be reused for a future auction, or
indication that the model has been submitted to a previous auction. Looking towards the future, we
would like to design SIRA to fit a repeatable auction structure, in which approved or rejected models
may be resubmitted in subsequent auctions.

Repeated Agent Utility. Previously, in Algorithm 1, agents start the regulatory process with zero cost
and value (i.e., they are building their models from scratch). In repeating SIRA auctions, agent cost
and value are accumulated across all previous auction submissions. For example, if an agent trains
its already-accepted model further to attain a higher safety level si, its total accumulated training
cost is M(si). This agent’s total value becomes the value its model gained from previous auction
submissions plus any value gained from the current auction.

By allowing repeated SIRA auctions, an agent is able to repeatedly submit its model for regulatory
review. We note that repeated submissions decrease the value of model deployment; once an
agent earns the reward for deploying their model, subsequent deployments of the same model with
improved safety levels can be realistically expected to earn less value than the initial deployment.
We characterize this loss in value for repeated submissions with an indicator function in the utility
function that only allows deployment value to be obtained once, on initial acceptance of a model.
While we allow agents to win premium rewards across multiple auctions, we note that a regulator can
curb this by either limiting the number of auction submissions per agent or the number of auctions
held per year. We now define the repeated SIRA auction utility of agent i, who has participated in
a− 1 previous auctions, as:

ui,a(bi) =

(
a∑

n=1

νni

)
− bi, (54)

where νni , the value gained at the nth auction model i was submitted to, is formulated as:

νni =


vd,ni · 1(if νn−1

i = 0) if bnj ≥ pnϵ and bni < bnj randomly sampled bid bnj ,

vd,ni · 1(if νn−1
i = 0) + vp,ni if bni ≥ pnϵ and bni > bnj randomly sampled bid bnj ,

0 if n ≤ 0.

(55)

The repeated SIRA auction setup creates a unique property for models in training. If an agent intends
to obtain a high safety level, but an auction takes place mid-training, the agent is actually incentivized
to submit their model early if they have a chance at winning the premium reward. Though the model
may have a lower likelihood of earning the reward, there is no consequence for models failing to
attain the premium reward. Gaining value is strictly beneficial to agents, and accumulated value
helps offset the costs of training a model. This property only exists for the premium reward; the
deployment reward can only be obtained once, thus there is no incentive to submit early to earn it.

Repeated Optimal Bidding Function. Using the same assumptions for single-auction SIRA, namely
Assumptions 1 and 2 along with private values, we can derive the bidding function for a rational
agent under a repeated SIRA auction setting. We follow an equivalent setup to Lemma 1 with regards
to the valuation of rewards, giving us the cumulative distribution function for vpi = Viλi as Fv(·) and
the probability distribution function as fv(·).

From our definition of utility ui,a(bi), we find that an agent i that does not participate (i.e., submitting
bi = 0) receives utility equal to νai . However, since bi = 0 will never be larger than pϵ (by definition),
it must be true that νai = 0 as well, since the model will never meet the required safety threshold.
Therefore, a non-participating agent will always receive non-negative utility.

ui,a(0) = 0. (56)
Following closely to the proof of Theorem 2 in Appendix B, we find that participating agents i ∈ P
(with P defined in the previous proof) will now have a utility of,

ui,a(bi) = νai + vdi · 1(νa
i = 0) + vpi P

(
bi > bj

)
− b(bi), bj ∼ randomly sampled agent bid,

= νai + vdi · 1(νa
i = 0) + vpi Fv(bi)− b(bi). (57)
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Taking the derivative and setting it equal to zero yields,

d

dbi
ui,a(bi) = vpi fv(bi)− b′(bi) = 0. (58)

As agents bid in proportion to their valuation, we solve the first-order conditions at bi = vpi ,

b′(vpi ) = vpi fv(v
p
i ). (59)

Note, at this point in the proof the bidding function calculation is now equivalent to the calculations
found in Lemma 1. We can thus follow the same steps to reveal our optimal bidding function,

b(vpi ) : = pϵ + vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz, (60)

which is equivalent to the optimal bidding function derived in Lemma 1.

As the optimal bidding function is equivalent, calculations for the Nash Bidding Equilibrium are also
equivalent to those found in Corollary 1 and Corollary 2. The optimal bid and utility participating in
SIRA (6) under the assumptions of Corollary 1 will thus be,

b∗i := min{b̂∗i , 1}, b̂∗i =

{
pϵ +

(vp
i )

2 ln(pϵ)

pϵ−1 if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2(ln(2vp

i )−1/2)+p2
ϵ

8(pϵ−1) if pϵ

2 ≤ vpi ≤ 1
2 ,

ui,a(b
∗
i ; b−i) =

{
νai + vdi · 1(νa

i = 0) +
2(vp

i )
2 ln(pϵ)

pϵ−1 − b∗i if 0 ≤ vpi ≤ pϵ

2 ,

νai + vdi · 1(νa
i = 0) +

2(vp
i )

2(ln(2pϵ)−1)+pϵ

pϵ−1 − b∗i if pϵ

2 ≤ vpi ≤ 1
2 .

Agents participating in SIRA under Corollary 1 submit models with the following safety,

s∗i :=

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.

The optimal bid and utility participating in SIRA (6) under the assumptions of Corollary 2 will be,

b∗i := min{b̂∗i , 1}, b̂∗i =

pϵ +
3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2
(
6(vp

i )
2−8vp

i +3
)
+p3

ϵ(3pϵ−4)

8(1−Fβ(pϵ))
if pϵ

2 ≤ vpi ≤ 1
2 ,

ui,a(b
∗
i ; b−i) =

νai + vdi · 1(νa
i = 0) +

6(vp
i )

2(p2
ϵ−2pϵ+1)

1−Fβ(pϵ)
− b∗i for 0 ≤ vpi ≤ pϵ

2 ,

νai + vdi · 1(νa
i = 0) +

vp
i

(
8(vp

i )
3−12(vp

i )
2+6vp

i +p2
ϵ(2pϵ−3)

)
1−Fβ(pϵ)

− b∗i for pϵ

2 ≤ vpi ≤ 1/2.

Agents participating in SIRA under Corollay 2 submit models with the following safety,

s∗i =

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.
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